NNET implementation

table date

########################################################################
##Chapter 1 — Introduction to Neural Networks — using R ################
###Simple R program to build, train and test neural networks ###########
### Classification based on 3 inputs and 1 categorical output ##########
######################################################################## ###Choose the libraries to use
library(NeuralNetTools)
library(nnet)###Set working directory for the training data
setwd(“C:/R”)
getwd()###Read the input file
mydata=read.csv(‘RestaurantTips.csv’,sep=”,”,header=TRUE)
mydata
attach(mydata)
names(mydata)##Train the model based on output from input
model=nnet(CustomerWillTip~Service+Ambience+Food,
data=mydata,
size =5,
rang=0.1,
decay=5e-2,
maxit=5000)
print(model)
plotnet(model)
garson(model)########################################################################

library(NeuralNetTools)
library(nnet)

###Set working directory for the training data
setwd(“C:/R”)
getwd()
###Read the input file
mydata=read.csv(‘RestaurantTips.csv’,sep=”,”,header=TRUE)
mydata
attach(mydata)
names(mydata)

model=nnet(CustomerWillTip~Service+Ambience+Food,
data=mydata,
size =5,
rang=0.1,
decay=5e-2,
maxit=5000)
print(model)

model=nnet(CustomerWillTip~Service+Ambience+Food,data=mydata, size =5, rang=0.1, decay=5e-2, maxit=5000)
# weights: 26
initial value 7.571002
iter 10 value 5.927044
iter 20 value 5.267425
iter 30 value 5.238099
iter 40 value 5.217199
iter 50 value 5.216688
final value 5.216665
converged

print(model)

print(model)
a 3–5–1 network with 26 weights
inputs: Service Ambience Food
output(s): CustomerWillTip
options were — decay=0.05

plotnet(model)

garson(model)

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store